
Programming
Basics
Part 1, episode 1, chapter 1, passage 1

Agenda
1. What is it like to program?
2. Our first code
3. Integers
4. Floats
5. Conditionals
6. Booleans
7. Strings
8. Built-in functions

What is it like to
program?
The skills behind programming

Some questions
● How much programming do you know

already?
● If you don’t have experience in

programming, what have you heard about it?
● If you have experience in programming,

what do you think it’s like?

What is it like to program?
Programming is about writing a series of
instructions in a language a computer can
understand.
Like writing a recipe in a foreign language

...OK, let me explain.

A recipe
When writing a recipe, there’s a few things
expected:
1. Listing out ingredients
2. Providing step-by-step instructions

A foreign language
Learning a foreign language involves:
1. Remembering words
2. Memorizing grammar
3. Understanding the culture
4. Recognizing the history
5. Processing complex thoughts into written

sentences

Interface
1. Unity
2. C#

Our first code
Obligatory “Hello World!”

Adding code to Unity
1. Create a new scene
2. Create a new C# file (HelloWorld.cs)
3. Attach the script to the Main Camera

Obligatory “Hello World!”
public class HelloWorld : MonoBehaviour {
 void Start() {
 Debug.Log(“Hello World!”);
 }
}

Obligatory “Hello World!”
Press the play button, and click the Console
tab:

Obligatory “Hello World!”

Why does this work?
public class HelloWorld : MonoBehaviour {

This line indicates our script is a Component
named “HelloWorld” that can be attached to
Game Objects. Everything between the “{“
right after MonoBehaviour and “}” will be
treated as part of the HelloWorld script.
(We’ll go over it in more details in Part 3)

Why does this work?
void Start() {

Every language has at least one event that will
run when the application starts. “Start()” is
Unity’s start event. Everything between the “{“
right after Start() and “}” will run on start.
C#: static void Main(string[] args)
Java: public static void main(String[] args)

Why does this work?
Debug.Log(“Hello World!”);

This line acts like a step in a recipe’s
instructions. It’s a Unity built-in function where
it’ll make anything between “Debug.Log(“ and
“)” appear on the Console (in this case,
‘“Hello World”’). The “;” indicates the end
of the step.

Let’s talk about syntax
● syntax = grammar
● “{}” indicate encapsulation

○ e.g. The Debug.Log(“Hello World!”) in void
Start(){Debug.Log(“Hello World!”);} is
the content of event Start().

● “;” indicate end of a step in a list of
instructions
○ This syntax haunts most beginning programmers

Let’s talk about syntax
Most languages (e.g. Java, C++, C#) only need
spaces/tabs/newlines (a.k.a. whitespaces) to make out
words. Otherwise it’s optional. For example, the following
is valid:
public class HelloWorld:MonoBehaviour{void
Start(){Debug.Log(“Hello World!”);}}
...but that’s hard to read, so programmers use whitespaces
for organization.

Changing things up
public class HelloWorld : MonoBehaviour {
 void Start() {
 Debug.Log(1);
 }
}

Why didn’t 1 need quotes?
Because “Hello World!” is a string
variable, and 1 is an integer variable. Debug.
Log() can print both variables just fine.

...Wait, what?

Integers
Variable type

Variables
Remember this?

Let x equal 7.
Solve x + 3.

Variables
Here’s the same thing in code:
public class HelloWorld : MonoBehaviour {
 void Start() {
 int x = 7;
 Debug.Log(x + 3);
 }
}

Why does this work?
int x = 7;

This line says, “let a variable named x be an
integer, with a value of 7.”

Debug.Log(x + 3);

This line says, “add 3 to variable x, then print
the results on the Unity console.”

Why use variables?
Variables store values, making them a
convenient way to modify and replace values
quickly in the same formula:
int x = 7;
Debug.Log(x + 3);
x = 3;
Debug.Log(x + 3);

About declaration
Any lines that says “this variable is this type” is
called a declaration:
int x;

Any lines below this declaration, down to the
encapsulating “}”, now knows variable “x” is an
integer.

About integers
“int” stands for integer. Like math, integer
variables can be any of the following values:
…-3, -2, -1, 0, 1, 2, 3…
But integers cannot have fractions or decimals.
Note: technically, integers does have an upper and lower
limit, but they’re really large. Google it.

About =
Unlike the English language, “=” does not stand
for equals. Instead, it stands for, “set the
variable on the left to the value on the right:”
int x = 7;

In the line above, we’re declaring that “x” is an
integer variable, and it should be set to 7.

About =
Since “=” sets the variable’s value, you can do
some neat stuff, such as:
int x = 7;
Debug.Log(x);
x = x + 3;
Debug.Log(x);

States
Like any list of instructions, each line changes
the code’s state:
int x = 7;
● From this line down, variable x now exists as an integer, with

value 7
x = x + 3;
● From this line down, variable x has a value x + 3, i.e. 7 + 3, i.

e. 10

States
Order matters! The following throw errors:
Debug.Log(x);
int x = 7;

When it reaches to “Debug.Log(x);” on the first
line, variable x hasn’t been declared yet, so the
code doesn’t know it exists.

About operators

integer operator Math operation Example

+ addition int x = 3 + 4; //x is 7

- subtraction int x = 3 - 4; //x is -1

* multiplication int x = 3 * 4; //x is 12

/ division int x = 5 / 3; //x is 1

% modulo (remainder
of division)

int x = 5 % 3; //x is 2
x = -7 % 5; //x is -2

Any value-changing math symbols are called operators:

About operators
Operators follow the order of operation:
int x = 5 + 2 * 7; //x is 19
You can use “()” to change the order of
operation:
int x = ((5 + 2) - 7) / 3; //x is 0

About variables
So long as their names are unique, you can make multiple
variables:
int x = 7;
Debug.Log(x);
int anotherVariable = x + 3;
Debug.Log(anotherVariable + x);
Note: technically, you can only have as many variables as
your computer OS allows. So less variables = efficient.

Naming variables
Variable names need to start with a letter (a-z,
A-Z). The rest can be lowercase, uppercase
letter, number, or “_”.
int this1sA_Val1dNam3;
int 1_this_Isn’t;
For re-using variables, capitalization matters.

Comments
Comments are text the computer completely
ignores. They’re useful for note taking:
// This is a comment.
/* This is a comment, too. */
/* This is good for multi-lines &
inlines. Computers can’t see me */

Floats & Doubles
Variable type

Integer limits
Integers can’t store decimals:
int x = 7 / 2;
Debug.Log(x);
x = 7 % 2;
Debug.Log(x);

This prints out 3, then 1.

Floats
Floats store decimals:
float x = 7.0f / 2.0f;
Debug.Log(x);

This prints out 3.5.

Why the “f” after 7.0?
Doubles are C#’s default variable type to store
decimals:
double x = 7.0 / 2.0;
Debug.Log(x);

However, most Unity functions uses floats
because they take up half the memory as
doubles (at a cost of lower accuracy).

Why the “f” after 7.0?
By putting “f” after a number (with or without
decimals), they become a float:
float x = 7.0f / 2.0f;
Debug.Log(x);

For the rest of this presentation, we’ll be using
floats.

Float operators
float operator Math operation Example

+ addition float x = 0.5f + 2.5f; //x is 3

- subtraction float x = 3f - 4f; //x is -1

* multiplication float x = 0.1f * -20f; //x is -2

/ division float x = 5f / 3f; //x is 1.5

Notice floats doesn’t have modulo.

About variables
Once declared, you can’t convert a variable to
a different type. The following will give you an
error:
float varFloat = 0.5f;
int varInt;
varInt = varFloat;

About variables
...but an integer-to-float is one of C#’s few
exceptions:
int varInt = 1;
float varFloat;
varFloat = varInt;

Conditionals
Filtering encapsulation

Conditionals
Remember this?

Let x equal 7.

Solve f(x) { if x > 0, x * 2
if x ≤ 0, x - 2

Conditionals
Here’s the same thing in code:
int x = 7;
if(x > 0) {

x = x * 2;
} else if(x <= 0) {

x = x - 2;
}
Debug.Log(x);

Why does this work?
if(x > 0) {

If the statement between the two “()” is true,
run what’s between the following “{“ to the “}”.

Basically, conditionals filter when a set of
instructions is allowed to run.

Conditionals
int x = -3;
if(x > 0) {

// The line below won’t run, because
// -3 is not greater than 0
x = x * 2;

} //...

If conditional
“if” always marks the start of a set of conditional
statements. It follows-up with “()” where it checks to see if
the comparison is true, and if so, runs what’s between the
following “{}”.
if(x > 0) {

x = x * 2;
} //...

Else conditional
“else” runs what’s between the following “{}” if the
previous conditional did not run. It’s optional, but if added
in, it must always appear last:
if(x > 0) {

x = x * 2;
} else {

x = x + 2;
} //...

Else-if conditional
“else if” runs what’s between the following
“{}” if the previous conditional did not run, and
the following “()” contains a true statement. It’
s optional, but if added in, it must always after
“if”, and before “else”:

Else-if conditional
int x = -3;

if(x > 5) {

x = x * 2;

} else if(x > 3) {

x = x + 2;

} else if(x > 1) {

x = x + 1;

} else {

x = x - 10;

}

Debug.Log(x);

Conditionals
Conditionals can be nested, such as:
if(x > 0) {

if(x > 5) {
x = x * 2;

} else {
x = x * 3;

}
} //...

Comparisons (int, float)
comparison (int, float) Math operation True False

== equals 3 == 3 3 == 2

!= not equals 3 != 2 3 != 3

< greater than 2 < 3 3 < 3

> less than 3 > 2 2 > 2

<= greater than or equals to 2 <= 3
2 <= 2

4 <= 3

>= less than or equals to 3 >= 2
3 >= 3

3 >= 4

About comparisons
You can’t compare 2 variables if they are not of
the same type.
if(1 == “Hello World!”) {}
Exception: integers and floats
if(1 == 1.0f) {}

A gotcha with float
Floats are inaccurate, and thus, their comparisons are
unpredictable. Depending on the computer and compiler,
the following conditional may not run:
float set1 = 2.5f;
float set2 = 5.0f / 2.0f;
if(set1 == set2) {

Debug.Log(“Hello World!”);
}

A gotcha with variables
Variables only exist within a pair of “{}” (we call this “scope”):
int x = 1;
//x exists here
if(x == 1) {

int y = x;
//x and y exists here

}
//y no longer exists

Booleans
Variable type

Booleans
Booleans look like this:
bool x = true;
bool y = false;
Debug.Log(x);
Debug.Log(y);
Their value is either true or false.

Comparisons
Comparisons creates a new boolean value:
bool x = (3 == 3);
bool y = (3 != 3);
Debug.Log(x);
Debug.Log(y);

Conditionals
The “()” in conditionals always takes in a boolean:
bool x = true;
if(x) {

Debug.Log(“Hello World!”);
} else {

Debug.Log(“Goodbye World!”);
}

Boolean operators

boolean
operator

Math
operation

True False

&& and true && true false && true
false && false

|| or true || false
true || true

false || false

! not !true !false

Booleans has their own set of operators

String
Variable type

Strings
Strings look like this:
string word = “Hello World!”;
Debug.Log(word);
Basically, they contain words and sentences.
Anything between the two quotes will be
treated as a single variable.

Strings
Strings has to be declared in the same line.
The following code will cause an error:
string word = “Hello
World!”;
Debug.Log(word);

Adding special characters
Each letter, space, number, and symbol in a string is called a character. Characters
that cannot be entered normally uses “\” followed by another character to represent it.

Character Name Notes

\” quote Add quotes into a string, e.g. “\”Hello\””

\\ backslash “true\\false”

\t tab

\n newline Creates a new line, like hitting “enter” key

\0 end string Don’t use this character, ever.

String operators

string operator Operation Example

+ concatenation string word = “back” + “pack”
// word is now “backpack”

== equals bool isEqual = (“a” == “a”)
// isEqual is now true

!= not equals bool isNotEqual = (“a” != “a”)
// isNotEqual is now false

Strings has their own set of operators

Other string tricks
If a concatenation operation starts with a string,
the next value can be an integer, float, or
boolean.
int number = 6;
string word = “Device ” + number;
Note: this is a C# feature. Many programming languages
do not support this.

Built-in functions
and variables
More power!

Functions
Remember this?

f(x) = x2

f(x , y) = x + y

Functions
Functions runs a series of instructions, and
optionally returns a value. They’re great for
running common mathematical formulas.

We’ll go over how to make your own function in
Part 2, but first, let’s go over functions we get
for free.

Function Syntax
Like if-conditionals, functions are always
followed by “()”, which depending on the
function, may require variables. Unlike
conditionals, they don’t use “{}”.
Debug.Log(typeof(int));
// The typeof() is a function.

Function Syntax
Many built-in functions come from a suite of functions
(called class). These functions starts with the class
name first, then period, then function:
Debug.Log(“Hello World!”);
// Debug is the class, and
//Log() is the function.

Mathf
If a function returns a value, you can treat the function like
a value (1, 2.0f, “Hello”, etc.). Take Unity’s Mathf as
an example:
float x = Mathf.Pow(3, 2);
Debug.Log(x);
// x is 9, since 3 to the
// second power is 9.

Mathf
Function Notes Example

Mathf.Sqrt(float) Square Root float x = Mathf.Sqrt(9); //x is 3f

Mathf.Sin(float)
Mathf.Cos(float)
Mathf.Tan(float)

Sin, Cosine, and Tangent
in trigonometry

Mathf.Approximately(
float, float)

Checks if 2 floats are
about equal

bool x = Mathf.Approximately(2.5f, 5f / 2f);
//x will consistently be true

Mathf.Round(float) Rounds a float float x = Mathf.Round(3.2f); //x is 3f

Mathf.Clamp(float,
float min, float max)

Prevents the first value
from going beyond the
bounds of the next two

float x = Mathf.Clamp(-1f, 0f, 2f); //x is 0f
float y = Mathf.Clamp(4f, 0f, 2f); //x is 2f

All Mathf functions are listed in http://docs.unity3d.com/ScriptReference/Mathf.html. Some notable ones are:

http://docs.unity3d.com/ScriptReference/Mathf.html

Random
Unity also has Random:
http://docs.unity3d.com/ScriptReference/Random.html

Function Notes Example

Random.Range(int min,
int max)

Random.Range(
float min, float max)

Gets a random value
between min and max.
The returned value may
be min, but will not be
max.

int x = Random.Range(1, 11);
// 1 <= x < 11, or 1 <= x <= 10
float y = Random.Range(0f, 4f);
// 0f <= y < 4f

http://docs.unity3d.com/ScriptReference/Random.html
http://docs.unity3d.com/ScriptReference/Random.html

About variables
int, float, bool, and string also contains a
suite of functions on their own!
int x = int.Parse(“123”);
Debug.Log(x);

int, float, bool, and string
Function Notes Example

int.Parse(string)
float.Parse(string)
bool.Parse(string)

Converts a string to int,
float, or bool

int x = int.Parse(“83”); //x is 83
float y = float.Parse(“0.3”); //y is 0.3f
bool z = bool.Parse(“True”); //z is True

string.Format(string,
anything,
anything...)

Creates a new string
where “{0}” is replaced
by the first “anything,”
“{1}” is replaced by the
second “anything,” and
so forth.

string x = string.Format(“{0} is {1}!”, \
 1.4f, “Sparta”);
// x is “1.4 is Sparta!”
string y = string.Format(“{1} over {0}!”, \
 false, “Eggs”);
// y is “Eggs over False”

string.IsNullOrEmpty
(string)

Checks if string is empty
(we’ll go over what’s
null in part 3)

bool x = string.IsNullOrEmpty(null); //true
x = string.IsNullOrEmpty(“”); //true
x = string.IsNullOrEmpty(“ ”); //false

Function syntax
Like classes, variables can also contain functions:
float x = 4f;
string y = x.ToString();
Debug.Log(y);
int, float, bool, and string doesn’t have
many, however.

int, float, and string

Function Notes Example

CompareTo(int)
CompareTo(float)
CompareTo(string)

Returns an integer that is
negative if the left variable
is less than the right,
positive if greater, and 0 if
both are about equal.

float x = 4f;

int y = x.CompareTo(3f); //y is positive

string z = “alpha”;

y = z.CompareTo(“beta”); //y is negative

ToString() Converts the variable into
a string.

int x = 25;
string y = x.ToString() + “ years”
//y is “25 years”

Notable functions that int, float, and string variables share:

More string functions
Function Notes Example

Replace(string,
string)

Replaces one string with
another

string x = “Hello World!”;
string y = x.Replace(“Hello”, “Goodbye”);
//y is “Goodbye World!”

Substring(int index,
int length)

Gets a string with defined
length, starting from index

string x = “Hello World!”;
string y = x.Substring(0, 5); //y is “Hello”

Remove(int index,
int length)

Removes a string of
defined length, starting
from index

string x = “Hello World!”;
string y = x.Remove(0, 6); //y is “World!”

ToUpper() Returns uppercase string string x = “tvgs”;
string y = x.ToUpper(); //y is “TVGS”

ToLower() Returns lowercase string string x = “TVGS”;
string y = x.ToLower(); //y is “tvgs”

Built-in variables
Classes may also contain pre-defined variables. Like
functions, you access them with the class name first,
then period, then the name of the variable. No “()”,
though:
Debug.Log(Mathf.PI);
// 3.14159265358979…
These values can be read-only (i.e. can’t be changed).

Mathf

Variables Notes Example

Mathf.PI Pi (as a float) float radius = 10f;
float area = Mathf.PI * (radius * radius);

Mathf.Infinity
Mathf.NegativeInfinity

Positive or negative
infinity (as a float)

Mathf.Deg2Rad
Mathf.Rad2Deg

Values to convert from
degrees to radians, and
vice-versa

float degrees = 90f;
float radians = degrees * Mathf.Deg2Rad;
// radians is about (Math.PI / 2f)
degrees = radians * Mathf.Rad2Deg
// degrees is about 90f

All Mathf variables are listed in http://docs.unity3d.com/ScriptReference/Mathf.html. Some notable ones (all
read-onlys) are:

http://docs.unity3d.com/ScriptReference/Mathf.html

Time
Variables Notes Read-

only?
Example

Time.time Seconds passed since
the game started

Yes

Time.timeScale How quickly time is
passing, as percent

No Time.timeScale = 0; //Stops time
Time.timeScale = 0.5f;
// time moves half the speed

Time.deltaTime Seconds passed
between frames (usually
a fraction)

Yes float x = 0;
x = x + 2 * Time.deltaTime;
//frame-independent change in value

Time.unscaledDeltaTime Seconds passed
between frames, ignoring
Time.timeScale

Yes float x = 0;
x = x + 2 * Time.unscaledDeltaTime;
//frame-independent change in value

All Time variables are listed in http://docs.unity3d.com/ScriptReference/Time.html. Some notable ones are:

http://docs.unity3d.com/ScriptReference/Time.html

int and float

Variables Notes Example

int.MaxValue
float.MaxValue

Maximum limit for int
and float, respectively

int.MinValue
float.MinValue

Minimum limit for int
and float, respectively

float.NaN Not-a-number. A result of
divide-by-zero.

float x = float.NaN;
float y = 0f / 0f;
bool isNaN = float.IsNaN(x); //true
isNaN = float.IsNaN(y); //true

int and float also have variables, too. The notable ones are:

Homework
For part 2

Hypotenuse
Given float variables side1 and side2, make a
program that prints the hypotenuse of a right-triangle.

side2

side1

hypotenuse

Integer’s state
Given int variables number, make a program that
prints either “Negative”, “Positive” or “Zero”
based on the whether the number is negative, positive,
or zero.

