
Download Starting Project
1. Open bit.ly/2I46RDy in a browser to download

“crash-course-godot-3.zip”
2. Unzip the file.
3. In your file browser, open the folder within the zip,

“crash-course-godot-3”.

https://bit.ly/2I46RDy

Crash Course Godot 3
Making 3D games with open-source software

Goal
● Get comfortable with Godot game editor
● Create an interactive 3D environment
● Learn lots of 3D development terms
● A brief introduction in visual scripting

Supplementary materials
● docs.godotengine.org/en/3.0/getting_started

/step_by_step
a. Official site providing tutorials on how to

use the game engine.
b. Doubles as an in-depth manual!

● youtu.be/-D-IcbsdT04
a. Recommended video tutorial

http://docs.godotengine.org/en/3.0/getting_started/step_by_step/index.html
http://docs.godotengine.org/en/3.0/getting_started/step_by_step/index.html
https://youtu.be/-D-IcbsdT04

Importing Tutorial Project
Step 1: Click “Import.”

Importing Tutorial Project
Step 2: Click on “Browse.”

Importing Tutorial Project
Step 3: Navigate to the “crash-course-godot-3,” and find
the file, “project.godot”. Click “open.”

Importing Tutorial Project
Step 4: Finally, click on “Import & Edit.”

Asset License
Original files obtained from:
http://opengameart.org/content/machu-picchu
● level.obj is a modified version of MPFull.blend from

ctdabomb, released under CC-by-sa 3.0
● grass.png is from samuncle, released under CC-by-sa

3.0
● rock.jpg is from Marianne Gagnon , release under

CC-by-sa 3.0
Link to CC-by-sa 3.0 license:
https://creativecommons.org/licenses/by-sa/3.0/legalcode

http://opengameart.org/content/machu-picchu
https://creativecommons.org/licenses/by-sa/3.0/legalcode

About Godot 3

What is Godot 3?
● A What-You-See-Is-What-You-Get (WYSIWYG) 3D & 2D

Game Engine
● Many built-in features

○ Physics, Sound, Scripting, Gamepad support, Plugins, and
more!

● Builds to many platforms
○ PC, Mac, Linux, HTML5 + WebGL, iOS (iPhone + iPad),

Android, Windows 10

Licenses and Fees
● Free forever!

○ Under the open-source MIT license
■ You can change the engine code if you want to!

○ Build to Windows, Mac, Linux, HTML5 + WebGL, iOS, Android, and
Windows 10

○ Has VR and AR support
○ C#, Python-ish GDScript, and visual scripting support

■ Extensions available for actual Python, D, etc.
○ Totally OK to sell your game! There’s no royalty fees.

Making a game

Setting Up the Project
● Godot has a base assumption all scenes must meet.
● Try selecting “Scene -> Save Scene”

Setting Up the Project
● An error indicating that the scene must have exactly

one tree root node.
○ What does that mean?

● Close pop-up by clicking, “I see…”

Setting Up the Project
● On the Scene Tree dock in the

upper-right hand corner, click on the plus
sign.

Setting Up the Project
● Select “Spatial” on the pop-up dialog, and click,

“Create.”
○ This creates a new root node!
○ Spatial is a node with…

spatial information.

Scene Tree Dock
● Displays the content of a scene in a tree

hierarchy.
● Every scene must have exactly one root

node.
● You can change the order of the objects

by dragging them up and down.
● Dragging objects into another turns that

object into a child (I’ll go over this later).

As an Aside
● Clicking the 3-dot button on the upper-right hand

corner of every dock let’s one change it’s position.

Quick lexicon review
● Node

○ Godot’s term for any individual object.
○ Each node specializes in a certain functionality.
○ Every entry in the Hierarchy pane is a node.

● Scene
○ Godot’s term for files storing a collection of nodes.
○ Store references to assets in the project.
○ Has a *.tscn file extension.

● Assets
○ Industry-wide term for any files used in the game.
○ For Godot, that’s anything inside the project folder.

Setting Up the Project
● Select “Scene -> Save Scene”
● Enter a file name. This lesson uses “Main Level.tscn”

○ Name must end in .tscn
● Click “Save.”

File System Dock
● Displays the contents of the project.

○ Automatically syncs with the folder if there’s any
changes

● Top-half displays the folders.
○ “res://” is the project folder itself.

● Bottom-half displays the content of the
selected folder.
○ Has a search bar to make it easier to find assets

Add a Model to The Scene
● Click on the folder, “assets” on

the File System dock.
● Drag-and-drop level.obj into

the center of the screen.

Add a Light to The Scene
● On Scene Tree dock, click the

plus button.
● Search for “light” and select

“DirectionalLight.”
● Click “Create.”

Add a Light to The Scene
● Rotate the directional light in

the Scene pane by
clicking-and-dragging the
transparent rings.

● Press Ctrl+S/Cmd+S to save
the scene

Quick lexicon review
● Models

○ Industry-wide term for 3D sculpture files.
○ Can contain animations.
○ Usually made in a specialized program, e.g. Maya, Blender, etc.

Importing 3D models
Godot can natively import:
● COLLADA (*.dae)

○ Supports UV-mapping, animations.
● Wavefront (*.obj)

○ Supports UV-mapping.
● glTF 2.0 (*.gltf)

○ Supports UV-mapping, animations, and materials.

About Lighting
● Directional Light

○ A sunlight emitted in one direction
● Omni Light

○ A glow emitting from a single point
● Spotlight

○ A cone-shaped light used to simulate
flashlights and spotlights

Scene Pane
● A 3D, tabbed view of a scene

where objects can be
positioned, rotated, and
scaled.

● Nodes selected in the
Hierarchy-pane are also
selected in the Scene-pane,
and vice versa.

Navigating the scene pane
● 3-button mouse:

○ Left-click to select objects.
○ Hold right mouse button to rotate camera around camera position.
○ Scroll wheel to zoom in and out.
○ Click and hold on the scroll wheel to rotate camera around the point

the camera is focusing on.
○ Hold shift, then click and hold on the scroll wheel to pan.

Manipulating game objects
● Object controls, from left to right:

○ All (Q)
○ Translate (W)
○ Rotate (E)
○ Scale (R)

● Controls to toggle object’s reference point:
● Play Game controls, from left to right:

○ Play game from starting scene (more on that later)
○ Pause game
○ Stop game
○ Play current scene
○ Play a selected scene (opens a pop-up)

Creating Materials
● Select “MeshInstance” in the Scene

Tree dock.
● In the Inspector dock, at the lower

right-hand corner, expand
“Material.”

● Under material “0,” click the “v”
button and select “New
SpatialMaterial.”

● Click on the new material.

Adding Texture to Model
● Expand the “Albedo” group.
● From the File System dock, under the “assets” folder,

drag-and-drop the “grass.png” to the “Texture” field.
● Click the back button.

○ On upper right-hand corner
of the dock.

Adding Texture to Model
● Repeat the steps for

Material “1,” using
file “rock.jpg”.

Inspector Dock
● Displays the properties and

details on a selected node in the
Scene Tree dock.

● One can edit the properties of an
object here.

● Some properties has yet another
inspector; use the 2 arrows on
the upper right-hand corner to
move forward or back inspectors.

Quick lexicon review
● Material

○ Industry-wide term for what the quality surface of a model is supposed
to look like (e.g. metal, plastic, non-shiny stuff)

○ In Godot, materials can be either embedded property or files (*.tres).
■ Changing a material file’s properties will update all game objects

with the same material
○ Models retain information on how materials are mapped to its surface

● Textures
○ Industry-wide term for images that represents how a model is

supposed to be painted
○ Models usually contains coordinates (called UV) that indicate how a

texture is supposed to be mapped on the model

Supported Images
In Godot,
● PNGs (*.png)
● JPEGs (*.jpg, *.jpeg)
● and more!

Adding Camera
Godot can embed existing scenes into another scene.
● From the File System

dock, under the
“assets” folder, drag
“FPS Controller.tscn”
into the Scene editor.

Playing the Game
● Press the play button.
● Observe that we get another pop-up.
● What does it mean?

Playing the Game
Godot requires that the project settings defines which
scene to start the game on. Fortunately, there’s a
convenient shortcut to set this setting.
● Click on “Select.”
● On the file browser,

the current scene
should be selected.
Just click, “Open.”

● This sets the setting!

Playing the Game
The game should now play!
● ...except the player is falling through the floor…
● What’s missing?

Adding a Collider
The ground needs a collider with the same shape as the
model. Fortunately, Godot has a shortcut.
● Select “MeshInstance” in the Scene Tree dock.
● In the Scene editor, click the “Mesh” button.
● Select “Create

Trimesh Static
Body.”

Playing the Game
● Press the play button.
● Use the mouse to look around, arrow keys (or WASD)

to move, and space to jump.
● Left-click to shoot.

Quick lexicon review
● Colliders

○ Industry-wide term for shapes representing the boundaries of an
object

○ Used by the physics engine to determine where objects collide

Types of Collider Nodes
● Static Body

○ A node for handling non-interactive objects.
○ No physics, e.g. gravity, is applied to this node.
○ Can be animated.
○ Needs at least one collider node as children for it to do anything.

● Collision Shapes
○ A collider node for a predefined shapes.
○ Can be generated from model’s data.
○ Requires a parent Body node (like Static Body).

● Collision Polygon
○ A collider node where the polygon can be defined by the user.
○ Requires a parent Body node (like Static Body).

Adding Premade Graphics
● Under the Scene Tree dock,

right-click the root node,
“Spatial.”

● In the pop-up, select
MeshInstance, and click, “create.”

● Observe that a new node,
MeshInstance2 was created, but
nothing appears in Scene Editor.
○ Note: for brevity, these node creation

steps will be shortened to, “create X”

Adding Premade Graphics
● In the Scene Tree dock, left-click MeshInstance2.
● In the Properties dock, change the mesh to “New

CubeMesh.”
● A floating cube will appear in the Scene editor, but we

know from previous example this cube has no colliders.

● Right-click “MeshInstance2,” and create a StaticBody
node.

● Clicking on the warning symbol brings up a pop-up
explaining the StaticBody expects
children.

● Click “OK” to close the dialog.
● Right-click StaticBody

and create a
CollisionShape.

Adding Premade Collider

Adding Premade Collider
● CollisionShape node will have a warning indicating no

shape is defined.
● Select the CollisionShape to update

the inspector.
● In the Inspector dock, click on the

arrow next to the Shape field.
● Select “New BoxShape.”
● Play the game, and shoot the cube!

Adding Premade Collider
● Why go through such a lengthy method to put together

a collider?
○ A shorter method to create tri-mesh collider exists, after all.

● Tri-mesh collider works well for complex shape that
rarely moves, but it’s bad for performance.

● Premade collision shapes, like cubes and spheres are
much faster!

● Let’s make the cube react to the bullets (and gravity)!

Adding Interactive Stuff
● Right-click on StaticBody, and click, “Change Type.”
● Change the type to Rigidbody.

○ Notice the icon changes, but name doesn’t.
○ Icon represents type.
○ Name is customizable.

● Play the game, and shoot
the cube.

● Try shooting at the ground
below the cube.

Adding Interactive Stuff
● Drag-and-drop the StaticBody above the MeshInstance2.

● Next, drag MeshInstance2 under StaticBody. Play the
game!

Quick lexicon review
● Rigid Body

○ Industry-wide term for a moving and/or interactive physics objects
○ Contains information such as mass, drag, and center-of-gravity
○ Turns a group of colliders (including those in the children) into a

single, interactable shape
● Child

○ Industry-wide term for an object whose position, scale, and rotation
follows that of another object: the parent

○ In Godot, they appear as nested entries in the Hierarchy tree view
○ Trivia: this “following parent” calculation process is known as forward

kinematics, a term in 3D animations

Adding a Sound
● In the Scene Tree dock, right-click

StaticBody, and create
AudioStreamPlayer3D node.

● Drag file “hit.wav” to the
the property, “Stream.”

● Now we need the sound to
play each time the cube hits
Something. How?

Adding a Script
● Select StaticBody, then click the

scroll with the plus sign on the
upper right-hand corner of the
dock.

● In the pop-up, select the
Language, “VisualScript,” and
change the path to
“res:///PlaySound.vs”

● Click, Create.

Code the Script
● While StaticBody is still selected,

click on the “Node” tab next to
the Inspector.

● Double-click on “body_entered(
Object body)”

● In the pop-up, select
“StaticBody,” and click,
“Connect.”

Code the Script
● Drag-and-drop the

AudioStreamPlayer3D from the
SceneTree node to the Script Editor.

● In the pop-up, select “play(float
from_position)”, then click “Open.”

● Then connect the two nodes’ white
arrows:

Finishing the Sound Effect
● Play the game.

○ Notice there’s no sound effect.
Something is missing!

● In the Scene dock, select
StaticBody.

● Click the Inspector tab.
● Check the “Contact Monitor”

property.
● Change “Contacts Reported”

to 1. Play the game.

Script Summary
● Visual Scripting takes a graph-based approach.
● First, a function based on an event or signal triggers.
● Then the functions follows the white line to the next

node.
● This node process the command; it then decides which

white triangle to follow through next (if any).
● If there is a white line from that triangle, it follows that

to the next node.
● Repeat until it reaches an end.

Importing Sound
Godot can natively import:
● WAV (*.wav)

○ Best for short sound effects
● OGG (*.ogg)

○ Best for music, especially PC and consoles

Duplicating the Cube
● Right-click on StaticBody, and select

“Save Branch as Scene.”
● Save the scene as “Cube.tscn”
● Select Spatial (the root node) in Scene

Tree dock.
● Drag-and-drop Cube.tscn in the Scene

editor everywhere!
a. Remember, scenes can be added to another like

a normal node!

Building an Executable
● Save the scene with

Ctrl+S/Cmd+S.
● In the file menu, select

"Project -> Export"
● In the pop-up dialog, click

“Add…” and select your
platform.

Building an Executable
● Click “Export Project.”
● Select a folder that isn’t in your project.
● Open the folder, and play

the build!

Congratulations!
Any questions?

Polishing Lighting
● Select “DirectionalLight,” and take a look

at the properties.
● Try changing any of the properties

highlighted on the right.
○ Highly recommend checking the “Shadow ->

Enabled” checkbox!

Polishing Post-Processing
● Double-click the file, “default_env.tres,”

then check the Inspector.
● See what happens if you change any of

the “Background” properties.
● See what happens if you change any of

the “Ambient Light” properties.

Polishing Post-Processing
● See what happens if you change any of

the “Dof Far Blur” properties.
○ Note: DOF = Depth-of-Field.

● See what happens if you change any of
the “Glow” properties.

Polishing Post-Processing
● Did anything change?

Polishing Physics
● Select “StaticBody,” and take a look at

the properties.
● Try changing any of the properties

highlighted on the right.
○ Remember to play the game on each change,

then shoot the cube to see what happens!

Polishing Materials
● Select “MeshInstance,” then click on one

of the materials under the Properties dock.
● Try changing any of the properties

highlighted on the right.
○ Highly recommend adjusting the “Metallic” and

“Roughness” properties.

Polishing Materials
● Did anything change?

Reading Scripts
● Click on the scroll

icon next to “FPS
Controller” in Scene
Tree dock.

● In the script editor,
click “FPS
Controller.vs”

● Finally, click the
“_process” function.

Reading Scripts
● The function “_process(float delta)” runs every frame

(i.e. all the time).
● Can you decipher what’s going on with the script?

Polishing Wrap-Up!
● What kind of polish did you make?

