Download Starting Project

- 1. Open <u>bit.ly/2I46RDy</u> in a browser to download "crash-course-godot-3.zip"
- 2. Unzip the file.
- 3. In your file browser, open the folder within the zip, "crash-course-godot-3".

Crash Course Godot 3

Making 3D games with open-source software

Goal

- Get comfortable with Godot game editor
- Create an interactive 3D environment
- Learn lots of 3D development terms
- A brief introduction in visual scripting

Supplementary materials

- docs.godotengine.org/en/3.0/getting started /step by step
 - a. Official site providing tutorials on how to use the game engine.
 - b. Doubles as an in-depth manual!
- youtu.be/-D-IcbsdT04
 - a. Recommended video tutorial

Step 1: Click "Import."

Step 2: Click on "Browse."

Step 3: Navigate to the "crash-course-godot-3," and find the file, "project.godot". Click "open."

Step 4: Finally, click on "Import & Edit."

Asset License

Original files obtained from:

http://opengameart.org/content/machu-picchu

- **level.obj** is a modified version of MPFull.blend from ctdabomb, released under CC-by-sa 3.0
- grass.png is from samuncle, released under CC-by-sa
 3.0
- rock.jpg is from Marianne Gagnon , release under CC-by-sa 3.0

Link to CC-by-sa 3.0 license:

https://creativecommons.org/licenses/by-sa/3.0/legalcode

About Godot 3

What is Godot 3?

- A What-You-See-Is-What-You-Get (WYSIWYG) 3D & 2D
 Game Engine
- Many built-in features
 - Physics, Sound, Scripting, Gamepad support, Plugins, and more!
- Builds to many platforms
 - PC, Mac, Linux, HTML5 + WebGL, iOS (iPhone + iPad),
 Android, Windows 10

Licenses and Fees

Free forever!

- Under the open-source MIT license
 - You can change the engine code if you want to!
- Build to Windows, Mac, Linux, HTML5 + WebGL, iOS, Android, and Windows 10
- Has VR and AR support
- C#, Python-ish GDScript, and visual scripting support
 - Extensions available for actual Python, D, etc.
- Totally OK to sell your game! There's no royalty fees.

Making a game

- Godot has a base assumption all scenes must meet.
- Try selecting "Scene -> Save Scene"

- An error indicating that the scene must have exactly one tree root node.
 - What does that mean?
- Close pop-up by clicking, "I see..."

 On the Scene Tree dock in the upper-right hand corner, click on the plus sign.

Scene

Filter nodes

Add Child Node (Control+A)
Add/Create a New Node

Select "Spatial" on the pop-up dialog, and click,

"Create."

• This creates a new root node!

Spatial is a node with...
 spatial information.

Scene Tree Dock

- Displays the content of a scene in a tree hierarchy.
- Every scene must have exactly one root node.
- You can change the order of the objects by dragging them up and down.
- Dragging objects into another turns that object into a child (I'll go over this later).

As an Aside

 Clicking the 3-dot button on the upper-right hand corner of every dock let's one change it's position.

Quick lexicon review

Node

- Godot's term for any individual object.
- Each node specializes in a certain functionality.
- Every entry in the Hierarchy pane is a node.

Scene

- Godot's term for files storing a collection of nodes.
- Store references to assets in the project.
- Has a *.tscn file extension.

Assets

- Industry-wide term for any files used in the game.
- For Godot, that's anything inside the project folder.

- Select "Scene -> Save Scene"
- Enter a file name. This lesson uses "Main Level.tscn"
 - Name must end in .tscn
- Click "Save."

File System Dock

- Displays the contents of the project.
 - Automatically syncs with the folder if there's any changes
- Top-half displays the folders.
 - o "res://" is the project folder itself.
- Bottom-half displays the content of the selected folder.
 - Has a search bar to make it easier to find assets

Add a Model to The Scene

- Click on the folder, "assets" on the File System dock.
- Drag-and-drop level.obj into the center of the screen.

Add a Light to The Scene

Add a Light to The Scene

- Rotate the directional light in the Scene pane by clicking-and-dragging the transparent rings.
- Press Ctrl+S/Cmd+S to save the scene

Quick lexicon review

Models

- Industry-wide term for 3D sculpture files.
- Can contain animations.
- Usually made in a specialized program, e.g. Maya, Blender, etc.

Importing 3D models

Godot can natively import:

- COLLADA (*.dae)
 - Supports UV-mapping, animations.
- Wavefront (*.obj)
 - Supports UV-mapping.
- gITF 2.0 (*.gltf)
 - Supports UV-mapping, animations, and materials.

About Lighting

- Directional Light
 - A sunlight emitted in one direction
- Omni Light
 - A glow emitting from a single point
- Spotlight
 - A cone-shaped light used to simulate flashlights and spotlights

Scene Pane

- A 3D, tabbed view of a scene where objects can be positioned, rotated, and scaled.
- Nodes selected in the Hierarchy-pane are also selected in the Scene-pane, and vice versa.

Navigating the scene pane

3-button mouse:

- Left-click to select objects.
- Hold right mouse button to rotate camera around camera position.
- Scroll wheel to zoom in and out.
- Click and hold on the scroll wheel to rotate camera around the point the camera is focusing on.
- Hold shift, then click and hold on the scroll wheel to pan.

Manipulating game objects

- Object controls, from left to right:
 - All (Q)
 - Translate (W)
 - o Rotate (E)
 - Scale (R)
- Controls to toggle object's reference point:
- Play Game controls, from left to right:
 - Play game from starting scene (more on that later)
 - Pause game
 - Stop game
 - Play current scene
 - Play a selected scene (opens a pop-up)

Creating Materials

- Select "MeshInstance" in the Scene Tree dock.
- In the Inspector dock, at the lower right-hand corner, expand "Material."
- Under material "0," click the "v" button and select "New SpatialMaterial."
- Click on the new material.

Adding Texture to Model

- Expand the "Albedo" group.
- From the File System dock, under the "assets" folder, drag-and-drop the "grass.png" to the "Texture" field.
- Click the back button.
 - On upper right-hand corner of the dock.

Adding Texture to Model

 Repeat the steps for Material "1," using file "rock.jpg".

Inspector Dock

- Displays the properties and details on a selected node in the Scene Tree dock.
- One can edit the properties of an object here.
- Some properties has yet another inspector; use the 2 arrows on the upper right-hand corner to move forward or back inspectors.

Quick lexicon review

Material

- Industry-wide term for what the quality surface of a model is supposed to look like (e.g. metal, plastic, non-shiny stuff)
- o In Godot, materials can be either embedded property or files (*.tres).
 - Changing a material file's properties will update all game objects with the same material
- Models retain information on how materials are mapped to its surface

Textures

- Industry-wide term for images that represents how a model is supposed to be painted
- Models usually contains coordinates (called UV) that indicate how a texture is supposed to be mapped on the model

Supported Images

In Godot,

- PNGs (*.png)
- JPEGs (*.jpg, *.jpeg)
- and more!

Adding Camera

Godot can embed existing scenes into another scene.

From the File System dock, under the "assets" folder, drag "FPS Controller.tscn" into the Scene editor.

- Press the play button.
- Observe that we get another pop-up.
- What does it mean?

Godot requires that the project settings defines which scene to start the game on. Fortunately, there's a convenient shortcut to set this setting.

- Click on "Select."
- On the file browser, the current scene should be selected. Just click, "Open."
- This sets the setting!

The game should now play!

- ...except the player is falling through the floor...
- What's missing?

Adding a Collider

The ground needs a collider with the same shape as the model. Fortunately, Godot has a shortcut.

- Select "MeshInstance" in the Scene Tree dock.
- In the Scene editor, click the "Mesh" button.
- Select "Create Trimesh Static Body."

Press the play button.

- Use the mouse to look around, arrow keys (or WASD) to move, and space to jump.
- Left-click to shoot.

Quick lexicon review

Colliders

- Industry-wide term for shapes representing the boundaries of an object
- Used by the physics engine to determine where objects collide

Types of Collider Nodes

Static Body

- A node for handling non-interactive objects.
- No physics, e.g. gravity, is applied to this node.
- Can be animated.
- Needs at least one collider node as children for it to do anything.

Collision Shapes

- A collider node for a predefined shapes.
- Can be generated from model's data.
- Requires a parent Body node (like Static Body).

Collision Polygon

- A collider node where the polygon can be defined by the user.
- Requires a parent Body node (like Static Body).

Adding Premade Graphics

- Under the Scene Tree dock, right-click the root node, "Spatial."
- In the pop-up, select
 MeshInstance, and click, "create."
- Observe that a new node, MeshInstance2 was created, but nothing appears in Scene Editor.
 - Note: for brevity, these node creation steps will be shortened to, "create X"

Adding Premade Graphics

- In the Scene Tree dock, left-click MeshInstance2.
- In the Properties dock, change the mesh to "New CubeMesh."
- A floating cube will appear in the Scene editor, but we know from previous example this cube has no colliders.

Adding Premade Collider

- Right-click "MeshInstance2," and create a StaticBody node.
- Clicking on the warning symbol brings up a pop-up explaining the StaticBody expects children.
- Click "OK" to close the dialog.
- Right-click StaticBody and create a CollisionShape.

Adding Premade Collider

- CollisionShape node will have a warning indicating no shape is defined.
- Select the CollisionShape to update the inspector.
- In the Inspector dock, click on the arrow next to the Shape field.
- Select "New BoxShape."
- Play the game, and shoot the cube!

Adding Premade Collider

- Why go through such a lengthy method to put together a collider?
 - A shorter method to create tri-mesh collider exists, after all.
- Tri-mesh collider works well for complex shape that rarely moves, but it's bad for performance.
- Premade collision shapes, like cubes and spheres are much faster!
- Let's make the cube react to the bullets (and gravity)!

Adding Interactive Stuff

- Right-click on StaticBody, and click, "Change Type."
- Change the type to Rigidbody.
 - Notice the icon changes, but name doesn't.
 - Icon represents type.
 - Name is customizable.
- Play the game, and shoot the cube.
- Try shooting at the ground below the cube.

🚱 StaticBody

CollisionShape

Adding Interactive Stuff

Drag-and-drop the StaticBody above the MeshInstance2.

Next, drag MeshInstance2 under StaticBody. Play the game!

StaticBody
CollisionShape MeshInstance2
MeshInstance2

Quick lexicon review

Rigid Body

- Industry-wide term for a moving and/or interactive physics objects
- Contains information such as mass, drag, and center-of-gravity
- Turns a group of colliders (including those in the children) into a single, interactable shape

Child

- Industry-wide term for an object whose position, scale, and rotation follows that of another object: the parent
- In Godot, they appear as nested entries in the Hierarchy tree view
- Trivia: this "following parent" calculation process is known as forward kinematics, a term in 3D animations

Adding a Sound

 In the Scene Tree dock, right-click StaticBody, and create AudioStreamPlayer3D node.

 Drag file "hit.wav" to the the property, "Stream."

 Now we need the sound to play each time the cube hits Something. How?

Search:

audiosteam Matches:

Adding a Script

- Select StaticBody, then click the scroll with the plus sign on the – upper right-hand corner of the dock.
- In the pop-up, select the Language, "VisualScript," and change the path to "res:///PlaySound.vs"
- Click, Create.

Code the Script

 While StaticBody is still selected click on the "Node" tab next to the Inspector.

Double-click on "body_entered(
 Object body)"

 In the pop-up, select "StaticBody," and click, "Connect."

Code the Script

- Drag-and-drop the AudioStreamPlayer3D from the SceneTree node to the Script Editor.
- In the pop-up, select "play(float from_position)", then click "Open."
- Then connect the two nodes' white arrows:

Finishing the Sound Effect

- Play the game.
 - Notice there's no sound effect.Something is missing!
- In the Scene dock, select StaticBody.
- Click the Inspector tab.
- Check the "Contact Monitor" property.
- Change "Contacts Reported" to 1. Play the game.

Script Summary

- Visual Scripting takes a graph-based approach.
- First, a function based on an event or signal triggers.
- Then the functions follows the white line to the next node.
- This node process the command; it then decides which white triangle to follow through next (if any).
- If there is a white line from that triangle, it follows that to the next node.
- Repeat until it reaches an end.

Importing Sound

Godot can natively import:

- WAV (*.wav)
 - Best for short sound effects
- OGG (*.ogg)
 - Best for music, especially PC and consoles

Duplicating the Cube

- Right-click on StaticBody, and select "Save Branch as Scene."
- Save the scene as "Cube.tscn"
- Select Spatial (the root node) in Scene Tree dock.
- Drag-and-drop Cube.tscn in the Scene editor everywhere!
 - a. Remember, scenes can be added to another like a normal node!

Building an Executable

- Save the scene with Ctrl+S/Cmd+S.
- In the file menu, select
 "Project -> Export"
- In the pop-up dialog, click "Add..." and select your platform.

Building an Executable

- Click "Export Project."
- Select a folder that isn't in your project.
- Open the folder, and play the build!

Congratulations!

Any questions?

Polishing Lighting

- Select "DirectionalLight," and take a look at the properties.
- Try changing any of the properties highlighted on the right.
 - Highly recommend checking the "Shadow -> Enabled" checkbox!

Polishing Post-Processing

- Double-click the file, "default_env.tres," then check the Inspector.
- See what happens if you change any of the "Background" properties.
- See what happens if you change any of the "Ambient Light" properties.

Polishing Post-Processing

- See what happens if you change any of the "Dof Far Blur" properties.
 - Note: DOF = Depth-of-Field.
- See what happens if you change any of the "Glow" properties.

Polishing Post-Processing

Did anything change?

Polishing Physics

- Select "StaticBody," and take a look at the properties.
- Try changing any of the properties highlighted on the right.
 - Remember to play the game on each change, then shoot the cube to see what happens!

Polishing Materials

- Select "MeshInstance," then click on one of the materials under the Properties dock.
- Try changing any of the properties highlighted on the right.
 - Highly recommend adjusting the "Metallic" and "Roughness" properties.

Polishing Materials

Did anything change?

Reading Scripts

- Click on the scroll icon next to "FPS Controller" in Scene Tree dock.
- In the script editor, click "FPS Controller.vs"
- Finally, click the "_process" function.

Reading Scripts

- The function "_process(float delta)" runs every frame (i.e. all the time).
- Can you decipher what's going on with the script?

Polishing Wrap-Up!

• What kind of polish did you make?

