
Key:
● Any fields in ​<>​ are required parameters.
● Any fields in ​[]​ are optional parameters. They may be omitted.
● Any field in ​[]...​ are optional parameters where more than one value can be

assigned, separated by at least one space.
● Remember that ​“”​ can be used to separate parameters, such as inserting a

filename that contains spaces.
● The ​‘*’​ acts as a wildcard, e.g. ​“*.txt”​ will match with any file in the current

folder with the file extension, ​txt​.
Commands:

● git init <directory>
○ Creates a new repository in the assigned directory.
○ Most people uses ​‘.’​ as the directory, indicating they want the repository

created in the current folder, i.e. ​“git init .”
● git add <filename1> [filename2]...

○ Adds one or more files in the project to be versioned under the repository.
○ Files ​must​ be added first before the repository keeps track of their changes.

Otherwise, they will be marked as “unversioned.”
● git commit [folder-or-filename1]...

○ Begins the process of creating a new revision in a repository. This
command will bring up a text editor, where one can write up a message
before closing it, finishing the commit process with the user-entered
description explaining the changes.

○ If no folder or filename is provided, all changes in the project ​except
unversioned files​ will be added in as a new revision. If a folder or filename
is provided, a revision only containing the assigned folders or files with be
versioned.

● git status [folder-name1]...

○ Displays a list of files in the project that changes from the last revision in
the current branch, if no folder or file name is provided. Adding a folder
name will display changes in that folder, only.

● git diff <filename>

○ Displays a list of files in the project that changes from the last revision in
the current branch, if no folder or file name is provided. Adding a folder
name will display changes in that folder, only.

● git remove <filename1> [filename2]...

○ Can be shortened to ​“git rm”
○ Deletes one or more files, both from the project, and in the repository.

● git reset

○ Reverts the project to the latest state stored for the current branch in the
repository

● git move <old-filename> <new-filename>

○ Can be shortened to ​“git mv”
○ Renames a file, and adds that change in records to the repository.
○ This command can also move a file from one folder to another.

● git revert <revision>

○ Reverses a change from a revision in the repository. These changes needs
to be manually committed.

● git remote add <repo-name> <url>

○ Bookmarks a URL under a given name. Commonly, this name is “origin.”
● git push [repo-name] [branch-name]

○ Pushes local revisions into a remote repository. The repo-name parameter
is a bookmark to a remote URL created from ​git remote add​ command.

● git clone

○ Downloads an online project into an empty folder.
● git pull

○ Actually two-commands-in-one: ​git fetch​ and ​git merge​, run in that
order.

○ Pulls changes from a remote repository, and merge them into the current
project.

● git fetch [repo-name] [branch-name]

○ Only​ pulls changes from a remote repository into the local one. Changes do
not ​ get merged into the current project.

● git merge [revision]

○ Merges changes from a revision into the current one.
■ If a revision is not provided, it’ll use “ ​HEAD​” (the most current

revision in the current branch).

