
Unity Scenes & Prefabs
The stuff you didn’t know you wanted to know

...I think...

What are scenes?
● Abstract: like a

scene in a play
● A staged-moment

What are scenes?
● More concrete:

○ A file with a list of GameObjects in it
○ Useful for making levels, standalone

menus
○ Has a *.unity file extension Appears like this in

the Project tab

How to make a scene?

What does a scene look like?
● The Hierarchy tab is a tree of

ALL GameObjects inside the
scene.

What does a scene look like?
● The Inspector tab lists all the

Components attached to a
GameObject.

What does a scene look like?
● The Scene tab is a visual representation of

the GameObjects and their Components in
the scene.

Diagram
Scene

GameObject

Components

GameObject
GameObject

Components
Components

Components

Components

Remember the build settings!
● Add scenes by dragging &

dropping them into the
Build Settings dialog

● The top-most enabled
scene will play first!

Load a scene while playing
● Can be done using “SceneManager”
● To access SceneManager, add the following

line at the top of the file:
○ using UnityEngine.SceneManagement;

The easy way:
● SceneManager.LoadScene(int index)

○ where index is the index listed in Build Settings
(starts at 0)

● SceneManager.LoadScene(string
name)
○ where name is the name of the scene file, without the

“.unity” file extension

Load a scene while playing

Pros & Cons
Pros
● It’s easy
● Uses less memory
Cons
● Suddenly pauses the game
● Can take forever
● Looks really bad

● SceneManager.LoadLevelAsync(int
index)

● SceneManager.LoadLevelAsync(strin
g name)

● Both return AsyncOperation
○ can configure whether to load the next scene

automatically
○ indicates how much progress was made

Load a scene without pausing

Pros & Cons
Pros
● Better experience
● Progress bar support!
● Control when the level loads
Cons
● Uses more memory
● Takes longer to load

The easy way:
● SceneManager.LoadLevel(int index,

LoadSceneMode.Additive)
● SceneManager.LoadLevel(string

name, LoadSceneMode.Additive)

Merge scenes while playing

Pros & Cons
Pros
● Makes it easier to split open levels into parts
Cons
● Suddenly pauses the game
● No way to tell when loading ends
● No automated memory clean-up process

● SceneManager.LoadLevelAsync(int
index, LoadSceneMode.Additive)

● SceneManager.LoadLevelAsync(strin
g name, LoadSceneMode.Additive)

● Both return AsyncOperation

Merge scenes while playing

Pros & Cons
Pros
● Better open-world experience
● Progress bar support!
● Control when the level loads
Cons
● Uses more memory
● No automated memory clean-up process

Scenes Summary
● Use SceneManager.LoadLevel() or

SceneManager.LoadLevelAsync() to
switch to different scenes

● Add LoadSceneMode.Additive as the last
argument to these functions to copy objects
from a scene into the one we’re playing in
○ It’s highly recommended to clean up the previous

scene’s objects where appropriate to save memory

Scenes Recommendations
● Devote at least one scene for the menus that load other

scenes
● Otherwise, divide scenes by individual level
● If using open-world setup, divide scenes by world parts

and use LoadSceneMode.Additive
● Smaller scenes are better!

○ They take up less memory, making it quicker to edit
○ Less prone to errors

What are prefabs?
● Short for prefabricated object
● Allows copying objects from

one scene to another
● Allows modifying a common

object in every scene (only in
the editor, though)

● Has *.prefab file extension

How to make a prefab?
● Drag & drop an object

into the projects tab

What does a prefab look like?

Appears blue in the Hierarchy dock Appears with this icon in the Projects dock

What does a prefab look like?
● You can now drag the prefab from the

Project dock to the Hierarchy or Scene dock
to create a copy of the object the prefab
represents!

● Useful for copying objects in one scene to a
different scene using the editor

Modifying prefabs: Project
You can modify a prefab in the Project dock
Just select the prefab in
the Project dock, then
make changes in the
Inspector dock. You are
now modifying the prefab
file directly!

Modifying prefabs: Project
So what happens if you do that?
● All scenes with that prefab in it will be

updated with that modification.
● Only the components in the top-most and

second-top-most objects in the prefabs can
be modified.

Modifying prefabs: Scene
You can modify a prefab in a Scene
To do so, make any modifications in the Scene, Hierarchy,
and/or Inspector on an instance of a prefab. Finally, select
the prefab and click the Apply button under the Inspector

Modifying prefabs: Scene
Alternatively, you can drag an object from the
Hierarchy dock into the prefab file in the
Project dock to modify it.

Modifying prefabs: Scene
So what happens if you do that?
● Any new child object in the prefab will now be stored as

part of that prefab
● Any bolded (i.e. modified) fields in the inspector will be

stored, removing the bold effect on each of those fields
● All scenes with that prefab in it will be updated with that

modification.
● With this method, you can modify any child object in

that prefab, and even add or remove them!

Modified Fields in Prefabs
● If there are any modified (i.e. bolded) fields

in a prefab, those values will be stored in the
scene it’s in.

● This means a scene can store variations of a
single prefab.

● Makes no sense? Let’s demonstrate:

Modified Fields in Prefabs
Let’s say there are two scenes with “Bold Fields” prefab:

Modified Fields in Prefabs
In Demo Scene 1, none of the
prefab’s fields are modified, so
they aren’t bolded:

Modified Fields in Prefabs
And in Demo Scene 2, the “Text”
and “Character Size” fields are
modified, thus appearing
bolded:

Modified Fields in Prefabs
Let’s modify the “Bold
Fields” prefab in the
Project dock
● Remember that this is

supposed to modify the
instance in each scene

Modified Fields in Prefabs
In Demo Scene 1, if we
select the “Bold Fields”
object, all the fields will be
modified with the new
values

Modified Fields in Prefabs
In Demo Scene 2, if we
select the “Bold Fields”
object, the Font Style will
be updated, but the bolded
field Text will not!

Modified Fields in Prefabs
If you want to change a modified field back to
what’s stored on the prefab file, right-click and
select “Revert Value to Prefab”

Prefabs Summary
● You can copy an object from one scene to

another by creating prefabs
○ Once a prefab is created, just drag that file into the

new scene to copy it
● Prefabs share properties between scenes

Prefabs Summary
● Changing the Prefab in the Project dock,

hitting the Apply button in the scene, or
dragging & dropping the object to a
pre-existing prefab file causes global
changes:
○ Any prefab instances in a scene will be updated with

the new changes, if the component fields aren’t
bolded

Prefabs Summary
● If a field in a prefab instance in a scene is

modified, those changes will remain local to
the scene
○ Modified fields will not be updated if the prefab file

changes

Prefabs Recommendation
● Great for duplicating objects repeatedly
● Useful for sharing information between

scenes
● Powerful enough to create subtle variations

in different scenes
● Like scenes, smaller prefabs are better

○ Quicker to edit, less error prone

