
Version Control & You
By Taro Omiya

What is Version
Control?

Version Control, or Source
Control Management
(SCM) is a set of
collaborative tools that
allows a team to retain the
history of changes in a
project

Uh....what does that mean?

OK, a Metaphor

Imagine, you have a time machine.

This time machine requires saving a specific point in time.

Then it gives you the ability to go back to that point in time.

Basically, version controls are elaborate backup solutions.

Introducing
Git

● One of the most
popular version control
from the creator of
Linux.

● Commonly used in
professional and
open-source settings.

Introducing
Git

● Git, like most version
controls, is a command
line tool

● Can be used both
online and offline

● This tutorial will use
TortoiseGit

The Basics

Creating a Repository

A repository is an encrypted backup of all
“versioned” files in a project. For Git, it’s held
in the .git folder.

1. Create a new, empty folder, and navigate
into it.

2. Right-click the middle of the file explorer.
3. Select “Git Create repository here…”

a. git init <directory>

Adding a File

One must explicitly let Git know which files to
version, i.e. to backup:

1. Create a new text file, FirstFile.txt.
2. Open the file in a text editor (e.g. Notepad),

and add the text, “First line!”
3. In file explorer, right-click the file and select,

“TortoiseGit -> Add…”
a. git add <filename>

Committing
Finally, a revision (i.e. a save point) needs to be
created:

1. Right-click an empty part in the explorer.
2. Select, ‘Git Commit -> “master”…’

a. git commit

3. Write a message at the top of the commit
dialog, and confirm FirstFile.txt is
checked.

4. Click, “Commit”.

Modifications

Note how TortoiseGit displays modifications:

1. Open FirstFile.txt in a text editor.
2. Add a new line, “Second Line!”
3. Create a new text file, SecondFile.txt

a. This file may remain empty.
4. Right-click an empty part in the explorer.
5. Select, ‘Git Commit -> “master”…’

Modifications
Note how TortoistGit displays modifications:

1. In the commit dialog, double-click FirstFile.txt
2. The new dialog provides highlights on what lines have changed.
3. Close this dialog. Also note “SecondFile.txt” is not checked.
4. Enter a message, then check SecondFile.txt, and finally click,

Commit.
a. Checking an unversioned file in a commit dialog also adds the file

to the repository.

Reverting Files
Git can easily revert or reset a project to the latest
state stored in the repository:

1. Open FirstFile.txt in a text editor, then
delete its content and save.

2. Delete SecondFile.txt
3. Right-click an empty part in the explorer.
4. Select, “TortoiseGit -> Revert…”

a. git reset

5. Check all files in the revert dialog, and confirm.

Deleting a File

A file must be marked for removal so the
repository knows to stop tracking it as well:

1. Right-click SecondFile.txt
2. Select, “TortoiseGit -> Delete”

a. git rm

3. Commit changes.

Displaying the Repository History

To show all the changes made in the repository
so far, use “log:”

1. Right-click an empty part in the explorer.
2. Select, “TortoiseGit -> Show log”

The Log dialog not only shows past
messages at the top and middle of
the dialog, but also what files has
changed at the bottom of the dialog.

Not only that, but one can also
review how each file changes by
simply double-clicking them.

Reverse-Merging a File
How does one revert changes that has already been committed? By
reverse-merging:

1. In the Log dialog, right-click the latest revision.
2. Select, “Revert change by this commit”.

a. git revert <rev>
b. Where <rev> is a hash
c. (see first line of each log)

3. Click OK.
4. Commit changes.

Moving a File
1. Create a new folder named, “sub”.
2. Move the “SecondFile.txt” into “sub”.
3. Right-click an empty part in the explorer.
4. Select, ‘Git Commit -> “master”…’

a. Do not commit.
5. Observe changes that were detected:

a. Technically, Git can version a file moved
this way, but it’ll create problems in the
future. There is a better way.

Moving a File

Git has a special way of marking moved or renamed files:

1. Return “SecondFile.txt” back to the original folder.
2. Right-click, hold, then drag the file into the “sub” folder. Upon letting

go, a unique context menu will show up.
3. Select “Git Move versioned item(s) here”.

a. git mv <old-filename> <new-filename>

4. Commit changes.
a. Notice status appears as “Rename”

A Quick Review

● A file needs to be marked by the add command, or else git will not backup the
file.

● The command, commit creates a new revision, a save point in the project’s
timeline. A revision usually has a custom message attached. These messages
can be reviewed under the log.

● commit automatically detects modifications to a file, and version them
accordingly. Exceptions are:

a. If a file should be delete, use the remove command.
b. If a file should be moved to another folder, use the move command.
c. If a file should be renamed, (oddly) use the move command.

A Quick Review

● The reset and revert command allows one to return the project to an older
revision. The former returns the project to it’s latest state; the latter reverses a
change from an older revision.

● These changes works wonderfully in text files, but not in binary or encrypted
files.
○ Code, HTML pages, etc. are easy to revert.
○ Images, sound, music, Word documents, etc. are harder to revert.

■ Not to mention these files inflate the repository size quite significantly.
○ Oddly, even if they’re converted to text, Unity scenes and prefabs are hard to revert as well.

■ Still recommended due to keeping the repository size small.

Collaboration

Create an Online Repository

GitHub, Bitbucket, and other online repositories provides one to share their
project to other people:

1. Create a new repository on GitHub (or an online repository of choice).

2. Give the repository a name
3. Adjust any settings

a. For the purpose of this lesson, the
repository will be marked public, but
feel free to setup a private
repository.

4. Since we’re importing an existing
repository, leave all options at
the bottom section unchecked
and set to “None.”

5. Click, “Create repository.”

Record the Online Repository’s URL

1. Copy the URL at the top of the webpage.
a. Make sure HTTPS is selected (rather than SSH)

Record the Online Repository’s URL

2. Right-click an empty part in the explorer.
3. Select, “TortoiseGit -> Push...”
4. In the Push dialog,

Click “Manage”

5. Paste the repo’s URL under the
“URL” field.

a. Notice the field, “Remote” will
automatically be filled with the
default value, “origin.” This is normal.

6. Click OK.
a. git remote add origin <url>

b. Essentially, this dialog creates a
bookmark named, “origin” that
points to the entered URL

Upload Project Online

1. Confirm the field, “Remote” is filled
with “origin”.

2. Click, “OK”.

Upload Project Online

3. On the next pop-up dialog, select “Yes”
a. git push -u origin master

b. The dialog is asking whether the
branch, “master” should be created
in the remote repository. What
“branch” means is a bit beyond the
scope of this lesson.

4. Enter your credentials for GitHub.

Download Online Project
1. Navigate out of the project.
2. Right-click on an empty part of the file

explorer, then select “Git Clone…”
3. Enter the same URL as the one copied

from the online repository.
a. git clone <url>

4. Click OK.
a. Note: if the online repository is

private, enter your GitHub
credentials.

Sharing Changes

1. In the cloned project, change the content of
“sub/SecondFile.txt” to, “I was here”

2. Commit this change.
3. Push this change.

a. Note: most settings in the Push dialog
should be already set; just click, “OK”.

4. Enter GitHub credentials.

Sharing Changes

1. Navigate to the original project.
2. Right-click on an empty part of the file

explorer.
3. Select “TortoiseGit -> Pull…”

Sharing Changes

1. In the Pull dialog, most settings should
be properly filled in.

2. Click OK.
3. Enter credentials.
4. Verify SecondFile.txt contains new

content.

A Quick Review

When an online repository is involved, there are now two levels of repositories
involved: one on your computer (local), and one online (remote).

● git commit adds revisions to your local repository.
● git push uploads all the commits in the local repository to the remote one.
● git pull is actually two-commands-in-one:

○ git fetch downloads commits from the remote repository to the local
one.

○ git merge applies the latest changes from the local repository to your
current project.

Merging Differences

Auto-Merge

1. In the original project, add yet another line in FirstFile.txt with
“Third line is the charm!”

2. Commit, then push this change.
3. Navigate to the cloned project.
4. Open “sub/SecondFile.txt”, then overwrite the content with,

“Changes made from cloned project.”
5. Only commit this change to the cloned project.
6. Pull changes from the remote repository.
7. Verify changes in FirstFile.txt.

Auto-Merge

1. While in the cloned project, bring up the log.
2. Note the graph column indicating a merge occured.

a. In particular, notice on each line which file changed, and where the
source of the change came from.

A Quick Review

Git generally tries to automatically merge changes from two or more people as
smoothly as possible.

● If each person works on a different file, usually, this goes very smoothly.
● If two or more people make changes on the same file, however, a merge

conflict may occur.
● Merge conflict occurs when Git detects two or more people made changes to

(approximately) the same lines in the same file.
● Important: as a general policy, always commit changes first before pulling!

○ It keeps all changes recorded in the repository.

Simulating a Merge Conflict

1. Remember we made a change to “sub/SecondFile.txt” in the
cloned project? Let’s push this change to the remote repository.

2. Navigate back to the original project.
3. Overwrite the content of “sub/SecondFile.txt” with “Changes made

from original project.”
4. Commit this change.
5. Pull from the remote server.

Resolving a Merge Conflict

1. Close the instructions on resolving a
merge conflict.

2. Another pop-up will appear, asking to
review the changes. Click “No” for now.
a. Note: answering “Yes” to this pop-up

brings up a similar dialog.
3. Right-click on an empty part of the file

explorer and select, “TortoiseGit ->
Resolve…”

Resolving a Merge Conflict

4. Right-click on “sub/SecondFile.txt” line.
a. “Edit conflicts” opens an editor to merge the conflicting

lines.
b. ‘Resolve conflict using “MERGE_HEAD (origin/master)’

overwrites the file with what’s in the remote repository.
c. ‘Resolve conflict using “HEAD”’ overwrites the file with

your local repository’s copy.
d. Double-clicking the line will be the same as selecting

“Edit conflicts.”

5. Select “Edit conflicts.”

Resolving a Merge Conflict

4. Right-click on “sub/SecondFile.txt” line.
a. “Edit conflicts” opens an editor to merge the conflicting

lines.
b. ‘Resolve conflict using “MERGE_HEAD (origin/master)’

overwrites the file with what’s in the remote repository.
c. ‘Resolve conflict using “HEAD”’ overwrites the file with

your local repository’s copy.
d. Double-clicking the line will be the same as selecting

“Edit conflicts.”

5. Select “Edit conflicts.”

The controls on the top of the Merge
dialog has the following functionality:

1. Button to indicate we’re done
merging the file.

2. Navigation buttons to quickly
jump from one conflicting line to
another.

3. Multiselect buttons that provides
options on how to resolve the
highlighted set of conflicting
lines. Right-clicking the
corresponding lines will provide
the same options.

The controls on the bottom of the
Merge dialog has the following
functionality:

4. Indicates the changes made from
the remote repository
(MERGE_HEAD (origin/master)).

5. Indicates the changes made from
the local repository (HEAD).

6. What the resulting file will look
like.

Most people use the right-click
context menu to resolve conflicts:

1. Right-click the red line in the
bottom panel.

2. Select “Use text block from right
before left”

a. Observe how the bottom panel
provides a preview of what the
merged file would look like.

3. Click, “Mark as resolved”.
4. Close the Merge and Resolve

dialog.

Don’t forget to commit the changes!

1. On commit, the following dialog
may appear.

2. Since we’ve resolved all conflicts,
click “OK”.

3. Remove lines that starts with ‘#’
from the message field.

4. Click “Commit”.

Notice the log indicates a merge has
occurred.

Questions?

